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Abstract

The nature of productivity shocks is a central feature of models of heterogeneous-

firm dynamics. Using firm-level data from Spain, we show that the observed pro-

ductivity dynamics differ from those implied by the canonical, linear AR(1) rep-

resentation with normally-distributed shocks. We document that the productivity

process features non-linear persistence and non-normality. Motivated by this, we

estimate a flexible stochastic process for productivity which allows for these fea-

tures and compare its implications with the canonical one. We find that the flexible

model fits the productivity data much better. We also estimate non-parametric,

semi-reduced form empirical investment functions and find that the two processes

imply very different responses to productivity shocks. Those estimated under the

flexible process fit much better the relationship between investment and productiv-

ity in the data. Finally, we embed both the non-linear and the canonical process

in a structural, partial equilibrium investment model and estimate capital adjust-

ment costs under both specifications. The model estimated under the non-linear

process fits the data much better and has very different implications for the relative

importance of fixed versus quadratic costs of adjustment.
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España. Beatriz González: Banco de España. Juan Carlos Ruiz-Garcia: Universitat de les Illes Balears.
Tatsuro Senga: Queen Mary University of London. We thank Manuel Arellano for his useful comments.
The views expressed here are those of the authors and are not necessarily the views of CFM, CEPR,
IFS, the Banco de España or the Eurosystem.



1 Introduction

It is widely documented that there are large and persistent differences in productivity

levels across firms. This empirical finding has led researchers to develop models of firm

dynamics with heterogeneity in productivity at the micro-level.1 In these models, firms

make optimal dynamic decisions, such as investment and hiring, based on their expec-

tations of future productivity. Therefore, the conditional distribution of idiosyncratic

productivity shocks is key to understand the dynamics of these decisions.

An important limitation of this literature is the assumption of normality and linear-

ity of the productivity dynamics. For example, the workhorse models of heterogeneous

firms assume that firm-level productivity follows an AR(1) process with normal innova-

tions. This limitation may lead to understate the salient feature of firm heterogeneity

underlying the economy and can matter both qualitatively and quantitatively in drawing

any conclusions drawn from these models.

In this paper, we break from this tradition and make the following contributions.

First, we use a comprehensive firm-level dataset for the Spanish economy to extract

firm-level productivity through the estimation of a production function at the sectoral

level. We show that the resulting productivity series displays substantial non-linearity and

non-normality. Motivated by this finding, we use a recent econometric method proposed

by Arellano et al. (2017) to estimate a flexible stochastic process for productivity that

does not impose either linearity or normality. We show that this flexible process fits the

productivity series much better than the alternative one that imposes such restrictions.

In order to allow for measurement error and/or different degrees of shock persistence,

both processes decompose productivity into two latent components: a persistent (first-

order Markov) component and a transitory one. In the case of the restricted process,

the two components take the form respectively of an AR(1) and white noise both with

normal innovations.

Given the two processes, we estimate by simulation semi-reduced-form empirical

1Seminal contributions are Hopenhayn (1992), Cooper and Haltiwanger (2006), Khan and Thomas
(2008), and Bloom (2009), among others.
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investment functions relating the investment rate to last period capital and the two

latent productivity components under either process. As in Arellano et al. (2017) who

estimate an empirical consumption rule, our empirical investment rule is also non-linear

and non-parametric.2 We find that the estimated response of investment to shocks is

substantially different between the two processes. In particular, the average derivative of

investment with respect to productivity shocks when the underlying process is nonlinear

(0.00 to 0.80) matches the data (0.02 to 0.70) well, as opposed to when the underlying

process is the canonical one (-0.10 to 1.05). We show that this difference is because of

the different responses to persistent and transitory productivity. In the model under the

nonlinear productivity process, investment responses are mainly driven by the persistent

productivity shock; by contrast, in the model under the canonical productivity process,

investment responses are mainly driven by the transitory shock.

In the final part of the paper, we estimate a structural model of investment with

adjustment costs à la Cooper and Haltiwanger (2006). As in Cooper and Haltiwanger

(2006) we allow for both quadratic and fixed adjustment costs, as well as irreversibility.

We structurally estimate the adjustment costs and irreversibility parameters under the

two processes. The model with the the non-linear productivity process fits the targeted

moments way better than the alternative. For instance, both models can match the

targeted rate of positive investment spikes and the standard deviation of investment

rates, while the two models yield different serial correlation of investment rates. The data

moments is 0.150 and the non-linear process yields 0.150 precisely, while the linear process

yields 0.351. This stark discrepancy has important implication for aggregate investment

dynamics as the sensitivity of investment critically hinges on the price sensitivity, which is

tightly linked to how investment is serially correlated at the micro level.3 Furthermore, the

two productivity processes entail important quantitative differences for the estimates of

adjustment costs with the canonical case implying a much larger role for fixed as opposed

2Our approach is well-suited because investment dynamics are highly non-linear with some notable
features like positive and negative spikes, inaction, and a weak serial correlation.

3A prime example is the analysis of the monetary policy transmission mechanism. It is commonly
understood that we need to dampen the interest rate sensitivity of investment for the canonical New Key-
nesian model to be able to reproduce an empirically consistent aggregate dynamics following monetary
policy shocks.
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to convex cost. Intuitively, the model with a linear productivity dynamics has to rely on

large fixed costs to match the investment non-linearities in the data. Conversely, in the

alternative model it is the productivity dynamics that partially drives the non-linearities

in investment.

The remainder of the paper is organized as follows. Section 2 discusses our dataset

and the details of the estimation of the production function and the resulting productivity

series. Section 3 discusses properties of the productivity series and motivates the need

for a flexible, non-linear stochastic process. Section 4 estimates both a flexible, non-

linear process and a canonical, linear one and compares their implications. We estimate

empirical investment rules in Section 5 while Section 6 estimates a structural investment

model under the two alternative processes and compares their implications particularly

for the estimates of adjustment costs. We conclude in Section 7.

2 Data and productivity estimates

2.1 Data

We use comprehensive firm-level data for the Spanish economy. The main dataset called

Central de Balances Integrada (CBI) is hosted by Banco de España (BdE). The CBI com-

prises the quasi-universe of Spanish firms, accurately representing the economy’s business

structure.4 The CBI includes very detailed information concerning all the categories of

the balance sheet, income statement, and the annual report for each firm since 1995.

In the paper, we use data covering all economic sectors from 1999 to 2017, which re-

sults, after cleaning, in more than 1.1 million different firms and 7.5 million firm-year

observations.5

We construct the main variables using the detailed information in the CBI. The

difference between the year of the annual accounts and the year of the company’s foun-

dation identifies the firm’s age. The sector is defined at the 2-digits level according to the

4Firms have the legal requirement to submit their annual accounts at the Commercial Registry. BdE
compiles and homogenises all the information at the Commercial Registry in a unique dataset, the CBI.

5The final sample starts at 1999 instead of 1995 as the lack of capacity and coordination among the
commercial registries results in low coverage for the first years of the agreement.
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Spanish National Accounts classification (CNAE). The difference between value of pro-

duction and intermediate goods expenditure delivers the value-added variable, which we

deflate using sector-specific value-added deflators from the Spanish National Accounts.

We define capital as the sum of intangible and productive assets and deflate it using

sector-specific capital deflators.6 Following the literature, we define labor as the wage-

bill in an attempt to control for worker’s heterogeneity across firms.7 We deflate the

labor variable using the value-added deflators. Finally, the materials variable measured

as intermediate goods is deflated using the value-added deflators. All the deflators are

based on 2006.

We focus our analysis on limited liability firms that are either non-lucrative corpo-

rations or not controlled by the public sector. There are many firms without or with small

economic activity which we remove from our sample.8 We clean the restricted sample

to avoid firms that have reported incorrect figures, variables with erroneous units, and

unrealistic values in any of the variables used in the paper. The details of the cleaning

procedure and a statistic summary of the variables are reported in Appendix A. We com-

pare the representativeness of the final sample against el Directorio Central de Empresas

(DIRCE).9 The final sample has the excellent coverage of 2/3 of all Spanish firms and

total employment. Notably, the coverage is stable over time, across main sectors, i.e.

manufacturing and services, and more importantly across narrowly defined categories of

the firm size distribution, a rare characteristic among the existing firm-level datasets that

tend to over-sample or restrict their attention to large corporations.

6The literature usually uses the long-term assets to define capital. Our more detailed data allows us
to remove the long-term assets that the firm has as unproductive investments, i.e. bonds, real estate,
stocks, which do not take part in the production process.

7We cannot use the number of workers in equivalent-time units, as we do not observe their charac-
teristics.

8Firms with zero employment or minimal economic activity are particularly likely to be used as
instrumental corporations in order to avoid taxes or hide heritage to the fiscal authorities. We define
firms with no economic activity as those with either their value-added is smaller than 1,000€, use less
than 100€ in materials, have less than 500€ as capital stock, employ less than 0.25 people in full-time
equivalence, or pay a total wage-bill smaller than 3,000€, in 2006 real €.

9DIRCE provides aggregate information on the census of Spanish firms by type of corporation, i.e.
limited vs non-limited, economic sector, and firm size measured as the number of employees. Unfortu-
nately, it does not provide information by firm’s age.
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2.2 Productivity

Total factor productivity (TFP) measures the overall effectiveness with which capital and

labor are used in a production process. The usual approach to extract TFP is through

the estimation of a structural production function (see, e.g., Olley and Pakes (1996)).

Following previous work, we assume that the production function has a Cobb-Douglas

form, i.e.,

Yjht = exp(ωjht)K
βk,h
jht L

βl,h
jht , (1)

where j is the firm, h the sector in which it operates, and t the year. By taking logs of

equation (1), we obtain the following expression that we estimate from the data:

yjht = βh,t + βk,hkjht + βl,hljht + zjht + εjht, (2)

where we define yjht to be the log value-added —value of production minus intermediate

inputs—, kjht the log of physical capital —operating long-term assets—, and ljht the

log of labor —wage bill—. The aggregate evolution of TFP in sector h is captured in

βh,t, while firm-idiosyncratic TFP is given by ωjht = zjht + εjht, where zjht is the firm’s

productivity and εjht is an error term (i.e., a transitory shock or measurement error) that

neither the firm nor the econometrician knows.

To estimate the parameters of the production function (2), we modify the Ackerberg

et al. (2015) semi-parametric procedure in two respects. First, we utilize a robust estima-

tion routine and systematically employ the continuously updated generalized method of

moments (CU-GMM) advocated by Kim et al. (2019). Second, to consider the effect of

aggregate shocks in estimating the production function parameters, we apply the econo-

metric framework in Hahn et al. (2020). In this way, we ensure that the extracted TFP

measures are free of the effect of aggregate TFP at the sector level in a given year. We

provide more details concerning the estimation procedure, together with the assumptions

we make, in Appendix B.

Figure 1 shows the production function point estimates of each sector with the dot

surface being the size of the sector in the economy in terms of value-added. The capital
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value-added elasticity —βk,h— mostly ranges in the 0.05 to 0.15 interval, slightly smaller

values than usually found in the literature, while the labor value-added elasticity —

βl,h—, which ranges from 0.4 to 0.8, is in line with previous findings. The dotted red line

limits the region —below the line— displaying a decreasing returns to scale technology.

The estimates point to a decreasing return to scale technology in most sectors, 52 out

of 54. Only two small sectors in the economy —pharmaceutical products and other

transportation materials— have a slightly increasing returns to scale technology. The

returns to scale —βk,h+βl,h— are mostly estimated around the 0.6 to 0.9 interval, in line

with previous studies.

Figure 1: Point estimates of the production function by sector

Note: The figure shows the point estimates of the production function in equation (1). Each dot
represents one sector at the 2-digits CNAE classification. The dot’s surface represents the weight of the
sector in the economy in terms of value-added. The dashed line divides the 2-dimension space according
to the returns to scale. Data from the Spanish Central de Balances, from 1999 to 2017.

We report the aggregation of the sector by sector production function estimation in

Table 1. The first two rows are the simple average across sectors and the bootstrapped

90% confidence interval, respectively. In the following rows, we weigh each sector ac-

cording to its value-added contribution to the economy. The parameters of the aggregate

production function are precisely estimated with the returns to scale parameter being

statistically smaller than one, i.e. decreasing returns to scale. Note that the aggregate
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estimates are more precise in the weighted specification. The reason is that sectors that

contribute more to the economy usually have more firms, being the production function

parameters more accurately estimated in those sectors.

Table 1: Summary of the production function estimates

Aggregation Capital Labor RtS
(90% CI) (90% CI) (90% CI)

Unweighted 0.101 0.658 0.759
(0.073, 0.131) (0.508, 0.802) (0.627, 0.884)

Weighted 0.101 0.658 0.759
(0.085, 0.124) (0.565, 0.744) (0.676, 0.834)

Note: We report the aggregated parameter estimates of the productivity function. We use value-added
weights computed from Spanish National Accounts. 90% confidence intervals are computed via 200
bootstrap samples. Data from the Spanish Central de Balances, from 1999 to 2017.

From the estimation of the production function parameters, we then obtain a series

of firm-level productivity ωiht:

ωjht = yjht − β̂h,t − β̂k,hkjht − β̂l,hljht. (3)

where β̂h,t is estimated as the sample mean of yjht − β̂k,hkjht − β̂l,hljht for each sector h

and period t. Therefore, we allow for time-varying differences in aggregate productivity

across sectors. The idiosyncratic productivity component ωjht has zero mean and repre-

sents productivity deviations to the sector average. Figure 2 plots the non-parametric

kernel —solid blue— and the Gaussian kernel —dashed red— estimates of the uncondi-

tional productivity distribution. Productivity heterogeneity is large, most of the firms

a productivity level going from 15% —exp{−2}— to 7 times —exp{2}— the average

sector productivity. The comparison of the empirical cross-sectional distribution with

the log-normal is interesting on its own as the AR(1) productivity dynamics would im-

ply log-normality. The empirical distribution has longer tails than the Gaussian kernel,

indicating a larger fraction of very low-productivity and high-productivity firms in the

economy.

The subtle deviations from log-normality in the cross-sectional distribution may

prelude richer productivity dynamics than those implied by the first-order autoregressive
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Figure 2: Distribution of the idiosyncratic firm-productivity component

Note: The figure shows the non-parametric kernel density estimate for the idiosyncratic firm-level pro-
ductivity component in the solid blue line and the Gaussian kernel estimate in the dashed red line. Data
from the Spanish Central de Balances, from 1999 to 2017.

representation, which we look at in the next section.

3 The dynamics of firms’ productivity

This section introduces a flexible stochastic process for idiosyncratic firm productivity.

To motivate our approach, Figure 3 reports the second to fourth conditional moments of

(the logarithm of) firm-level productivity by percentile of productivity in the previous pe-

riod. The moments reported are persistence–as measured by the first-order autoregressive

coefficients—and quantile-based measures of dispersion

∆ = P90− P10,

skewness

SK =
(P90− P50)− (P50− P10)

P90− P10

and kurtosis

κ =
P92− P8

P83− P17
.
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The measure of skewness SK captures the asymmetry of the distribution as measured

by relative fraction of the overall dispersion (P90 − P10) accounted for by the upper

(P90 − P50) versus the lower (P50 − P10) tail. It is negative when the lower tail is

longer than the upper one. Kurtosis κ captures the length of the tails. Its value is 1.4

for the normal distribution.

Figure 3 reveals two features of the data. First, the distribution of productivity

is not Normal, displaying negative skewness and excess kurtosis (long tails). Second,

the conditional moments are not independent of the previous productivity realisation.

Productivity is substantially more persistent, and skewness more negative, for firms with

high productivity realisations. Also dispersion and kurtosis display substantial variation

over productivity ranks.

This contrasts with the typical AR(1) productivity process, assumed in most models

of heterogeneous firms’ investment dynamics; namely

zjt = ρzj,t−1 + vjt, vjt ∼ N(0, σ),

where zjt is the logarithm of productivity for firm j at time t. The AR(1) process is

linear, which implies that persistence ρ and other second σ and higher-order conditional

moments are independent of past histories. Both normality and linearity are at odds with

the evidence in Figure 3.

It is this evidence which prompts us to estimate a flexible stochastic process for

firms’ productivity. In doing so we lean on a recent literature that has shown that the

dynamics of both earnings (Arellano et al., 2017; De Nardi et al., 2019; Guvenen et al.,

2021) and wages (De Nardi et al., 2021) display substantial deviations from normality

and linearity.

In particular, we rely on the quantile-based panel data method proposed by Arellano

et al. (2017) to estimate a flexible, non-parametric model that allows for non-normality

and non-linearity, but nests the AR(1) process as a special case.
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Figure 3: Preliminary evidence: second to fourth moments of productivity distribution
conditional on productivity in the previous period.

Note: Top left: persistence (first-order autoregressive coefficient). Top right: dispersion. Bottom left:
Kelley skewness. Bottom right: kurtosis.
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3.1 A flexible productivity process

Consider a cohort of firms indexed by j and denote by t the firm’s age (relative to t = 1).

Let us assume that zit is the logarithm of firm productivity that we extracted from the

production function estimation in subsection 2.2. We can decompose zjt into a persistent

component, ηjt and a transitory component, εjt:

zit = ηit + εit, i = 1, . . . , N and t = 1, . . . , T, (4)

wherein the probability distributions of η and ε are absolutely continuous.

The first deviation from the typical AR(1) assumption is that productivity is not

restricted to follow a univariate process. This is standard in the literature on earnings

dynamics going back to Abowd and Card (1989). The reason behind that is the presence

of measurement error which would bias downward the estimated persistence. Allowing for

measurement error is likely to be equally, if not more, important in the case of measured

productivity. Similar formulations of the AR(1) productivity process have been proposed

by Gourio (2008), Roys (2016) and Sterk et al. (2021).

The second deviation is that, although the persistent component ηjt is still assumed

to follow a first-order Markov process, the process is general rather than restricted to be

linear. This can be represented as

ηjt = Qη(ujt|ηj,t−1, t), ujt|ηj,t−1, ηj,t−2, . . . , ηj1 ∼ Uniform(0, 1) t = 1, . . . , T, (5)

where Qη(τ |ηj,t−1, t) is the conditional quantile function of ηj,t given ηjt−1, for each τ ∈

(0, 1).

Intuitively, the quantile function is the inverse of the cumulative density function.10

It maps random draws of ujt from the uniform distribution —cumulative probabilities—

to corresponding random draws (quantiles) from the conditional distribution of ηjt. The

AR(1) (linear) case can be seen as a special case of (5) when the quantile function

specialises to the linear separable form ηjt = ρηjt−1 +Φ−1
t (ujt;σ), where Φ−1

t (ujt;σ) is the

10For a generic random variable v, the quantile function is a mapping from the interval (0, 1) into the
support of v. Namely, vq = Q(q) satisfies P [v ≤ vq] where P [·] denotes the probability distribution of v.
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inverse of the cumulative density function of a normal distribution with mean zero and

standard deviation σ.

One way to understand the role of non-linearity is in terms of a generalized notion

of persistence

ρ(τ |ηj,t−1, t) =
∂Qt(τ |ηj,t−1, t)

∂η
, (6)

which measures the persistence of ηjt−1 when it gets hit by a current shock ujt with rank

τ . This quantity depends on the past productivity component ηjt−1 and the percentile

τ of the current shock. Note that while the shocks ujt are i.i.d. by construction, they

may differ along the persistence associated with them. One can then think of persistence

in this context as persistence of productivity histories. Moreover, persistence is allowed

to depend on the size and the direction of the shock ujt. As such, the persistence of

productivity of firm j in period t − 1 will evolve depending on the size and sign of

current and future shocks ujt, ujt+1, . . . , ujT . In particular, our model allows particular

shocks to wipe out the memory of past productivity history. In contrast, in the AR

process, ρ(ηjt−1, τ) = ρ is constant and, therefore, independent of the past productivity

component ηjt−1 or the shock realization ujt.

A similar unrestricted representation can be used for the, zero-mean, transitory

component εjt with the only difference that it is independent over time and of ηjt. The

same representation can be used for the initial condition ηj1.

4 Estimation of productivity processes

4.1 The non-linear productivity process

Following Arellano et al. (2017), we specify the quantile functions for the persistent and

transitory components as linear combinations of bivariate (Hermite) polynomial basis
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functions fk, for k = 0, 1, . . . ,:

Qη(τ |ηjt−1, agejt) =
K∑
k=1

aηk(τ)fk(ηjt−1, agejt) (7)

Qε(τ, agejt) =
K∑
k=1

aεk(τ)fk(agejt) (8)

Qηj1(τ) =
K∑
k=1

aη1k (τ)fk(agej1) (9)

where agejt is the age of the firm at time t aηk(τ), aη1k (τ). The coefficients aεk(τ) are mod-

elled as piece-wise linear splines on a grid [τ1, τ2], . . ., [τL−1, τL], which is contained in the

unit interval. We then extend the specification for the intercept coefficients aη0(τ), aη1
0 (τ),

and aε0(τ) to be the quantile of the exponential distribution on (0, τ1] (with parameter

λQ−) and [τL, 1) (with parameter λQ+).

If the persistent and transitory components of productivity were observed, one could

estimate the parameters of the quantile models via ordinary quantile regression. However,

as the two components are latent variables, we proceed with a simulation-based algorithm.

Starting with an initial guess of the parameter coefficients, we iterate sequentially between

draws from the posterior distribution of the latent productivity components and quantile

regression estimation until convergence of the sequence of parameter estimates.

We provide a more detailed explanation of the estimation procedure and the iden-

tification arguments in Appendix C. We obtain standard errors via both non-parametric

and parametric bootstrap, with 500 replications.

4.2 The canonical productivity process

We estimate the canonical process of productivity via a quasi-maximum likelihood pro-

cedure, which we explain in Appendix D. As such, we obtain the standard errors via the

usual asymptotic variance calculation. The results of the estimation are in Table 2. As

can be observed, we find that the persistent component is highly persistent, albeit with

root below one.
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Table 2: Parameters of the linear AR(1) process

Parameter Estimate
(Std. Err.)

Autoregressive coeff. of persistent component 0.924
(0.086)

Std. dev. of innovation to persistent component 0.231
(0.065)

Std. dev. of the transitory component 0.223
(0.091)

Std. dev. of the initial condition 0.608
(0.121)

Note: We report the parameter estimates of the linear AR(1) process for productivity. Standard errors
are computed via the asymptotic variance calculation. Data from the Spanish Central de Balances, from
1999 to 2017.

4.3 Comparing the canonical and the non-linear productivity

processes

We compare the implications of the canonical and the non-linear productivity process to

understand the differences between the two processes.

Figure 4 compares estimates of the persistence of productivity zjt in the Spanish

data to those that one obtains by simulating productivity under the two estimated pro-

cesses. The upper left panels report the generalised persistence coefficient in equation

(6) for the log of productivity zjt, as a function of the previous productivity realization

zj,t−1 and the rank of the innovation τ.11 The figure confirms the strong evidence of non-

linear persistence in the top left panel in Figure 3. More importantly, it shows that the

big driver of non-linearity is the fact that very good—high rank—shocks strongly reduce

the persistence of previous productivity realisation for firms in the bottom half of the

distribution of previous productivity. The upper right panel and bottom panel are the

counterpart of the top left panel on but computed on data simulated respectively with

the estimated non-linear and linear processes. It is clear that the non-linear process re-

produces very well the patterns in the data. In contrast, the linear model fails to match

such patterns as it implies constant persistence by construction. We provide the standard

errors computed by nonparametric bootstrap in Figure 16 of Appendix E. As the graphs

11For clarity, the coefficients plotted in the top left in Figure 3 and the top panel in Figure 4 are
related. The former is given by the latter averaged over the innovations.
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Figure 4: Non-linear persistence of productivity

Note: The above figures show the estimated persistence implied by the data, the non-linear, and linear
model. Upper left: Persistence estimated from the data. Upper right: Persistence estimated from the
simulated data implied by the estimation of the non-linear productivity process. Bottom: Persistence
estimated from simulated data implied by the estimated linear AR(1) process. Data from the Spanish
Central de Balances, from 1999 to 2017.

show, we find that our results on nonlinear persistence are precisely estimated.

Figure 5 shows differences in the persistence and conditional variance of the per-
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sistent and transitory productivity components between the two processes. The top left

panel plots the generalized persistence coefficient in equation (6) for the persistent com-

ponent η for the non-linear process, while the top right panel reports its average over the

innovations and its, constant, counterpart for the canonical process. In the non-linear

case, the persistence of η is increasing in the rank of the previous realisation, mainly be-

cause above median shocks partially wipe out the memory of previous histories. On the

other hand, the linear model with constant persistence underestimates the average per-

sistence of η. The bottom left and bottom right panels plot the dispersion of innovations

to η and ε respectively. The linear process not only misses the non-linear pattern in the

dispersion of shocks to the persistent. It also overestimates the dispersion of persistent

shocks and underestimates that of transitory shocks, relative to the flexible process.12

Finally, we show the implied marginal distributions of the persistent component η

and the transitory component ε for the non-linear model in Figure 6. Althhough there are

slight departures from the non-Gaussian distribution in the persistent component ηjt, it is

the transitory component that shows the clearest departure from a Normal distribution.

12We also show the conditional skewness measures in Figure 15 of Appendix E. As the results indicate,
both processes imply differences in conditional skewness, with the nonlinear process being able to replicate
the features of the data.
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Figure 5: Nonlinear persistence and dispersion of the persistent and transitory compo-
nents of productivity

Note: The above figures show the persistence and conditional dispersion of ηjt and εjt. Upper left:
Persistence of ηj,t−1 as a function of ηj,t−1 and τshock for the non-linear process. Upper right: Persistence
of ηj,t−1 for the non-linear and linear process. Lower left: Conditional dispersion of ηjt for the non-linear
and linear process. Lower right: Dispersion of εjt for the non-linear and linear process.

Figure 6: Densities of ηjt and εjt

Note: Densities implied by the estimated non-linear productivity process. The figure on the left shows
densities of the persistent component ηjt. The figure on the right shows densities of the transitory
component εjt. Data from the Spanish Central de Balances, from 1999 to 2017.
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5 Empirical investment policy functions

This section estimates empirical investment policy functions along the lines of Bazdresch

et al. (2018); Gala et al. (2020). Policy functions are a mapping from the relevant state

to the investment choice that summarises the key predictions of any investment model.

As pointed out in Bazdresch et al. (2018); Gala et al. (2020), they are easy to estimate, as

flexible polynomial approximations in the state variables, which can accommodate very

general assumptions. In the specific case, they can accommodate both the non-linear and

canonical productivity processes which allows us to use the same specification to estimate

the policy functions under the two processes.

The resulting empirical policy functions are informative about the different impli-

cations of the two processes for the dynamics of investment, independently from any

additional model structure. They may also used to guide the estimation of a structural

model.

5.1 Empirical investment rule

Given the filtration implied by the two productivity processes an appropriate state vector

for the investment policy function is given by the capital stock k at the beginning of the

period and the two productivity components η and ε. This is true for the structural model

in Section 6, but also for a much larger class of models with most types of adjustment

costs considered in the literature.

This implies that he following empirical investment policy function is:

ijt+1 = gt(kjt, ηjt, εjt, ujt+1), t = 1, . . . , T, (10)

with ijt firm net investment rate as a share of capital, kjt be (log) of capital for firm j at

time t. The ujt’s are stochastic determinants of firm investment costs, which we assume

to be independent of the state variables and independent over time.

The empirical policy function we specify here is similar to those of Bazdresch et al.

(2018) and Gala et al. (2020), who utilize their empirical models to estimate structural

models of firm investment. A crucial distinction between the model we present here and
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previous models in the literature is that we decompose productivity into persistent and

transitory components.

5.1.1 Empirical specification

Given the potential non-normality of the investment distribution, we specify the condi-

tional distribution of investment rates given capital and the components of productivity

as the following quantile model for a given quantile τl:

ijt =
K∑
k=0

aIk(τl)fk(kjt, ηjt, εjt, agejt) + X
′

jtβ(τl) (11)

where fk(·) is a dictionary of functions. In practice, we use tensor products of lower-order

Hermite polynomials.13 The model is a flexible specification of the conditional distribu-

tion of investment given the state variables, which does not impose specific distributional

assumptions on investment rates. In contrast, both Bazdresch et al. (2018) and Gala et al.

(2020) model just the mean of the conditional distribution of investment rates given state

variables, thus implicitly assuming normality, which is at odds with the data.14

We also specify a vector of controls Xjt, that aims to capture aggregate state vari-

ables that potentially affect firm investment decisions. In particular, the controls here

are time dummies at the sector level that correspond to each year in the panel. As we

have a quantile model, we also allow these variables to be quantile-specific.

Similar to the estimation of the productivity process, we model aIk(τ) as piece-wise

linear splines on a grid [τ1, τ2], . . ., [τL−1, τL], which is contained in the unit interval. We

then extend the specification for the intercept coefficient aI0(τ) to be the quantile of the

exponential distribution on (0, τ1] (with parameter λQ−) and [τL, 1) (with parameter λQ+).

We use tensor products of Hermite polynomials for fk(·), each component of the product

taking as argument a standardized variable.

This modelling specification stands in contrast to Gala et al. (2020) and Bazdresch

13In particular, in the results we present, the order of polynomials is (2,2,1,1).
14We estimated a model that is similar to those specified by Gala et al. (2020) and Bazdresch et al.

(2018). Our estimation results indicate that while we are able to get similar derivative effects, we are
unable to match the unconditional distribution of investment observed in the data. This is especially
important if we would like to use the empirical policy function to generate targets for structural estima-
tion.
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et al. (2018), who proceed with a series specification of the empirical policy function.

The disadvantage of modelling investment through a series specification is that it does

not allow for interactions between different state variables. As it will turn out, these

interactions appear to be important for firms’ investment decisions.

5.2 Estimation strategy

The main challenge in estimating the empirical policy function that we specify here

is that the stochastic components of productivity are unobserved. If we had in hand

observations of the persistent and transitory components of productivity, we would be able

to proceed with ordinary quantile regressions and estimate the policy functions directly.15

However, the fact that the two components are latent, i.e. unobserved, requires a more

sophisticated estimation algorithm. With this in mind, we proceed with the simulation-

based estimation algorithm proposed in Arellano et al. (2017), modified to our specific

context. Specifically, we recover estimates of the investment policy functions given the

estimates of productivity process obtained earlier.16

The estimation procedure consists of two steps. Starting with an initial guess of the

parameters of the investment function µ̂(0), we iterate the following steps on s = 1, 2, . . .

until convergence of the µ̂(s) process:

1. Stochastic E step: For each firm, draw observations of the persistent component

η
(m)
j = (η

(m)
j1 , . . . , η

(m)
jT ) from the posterior distribution f(ηjt|kjt, ijt+1, εjt; µ̂

s, θ̂). We

can then compute the associated transitory component ε
(m)
jt = z

(m)
jt − η

(m)
jt .

2. M step: Compute:

min
aI0(τl),...,a

I
K(τl)

N∑
i=1

T∑
t=1

M∑
m=1

ρτl

(
ijt+1 −

K∑
k=0

aIk(τl)fk(kjt, ljt, η
(m)
jt , ε

(m)
jt , ageit+1)−X

′
jtβ(τl)

)

for l = 1, . . . , L, where ρτl(·) is the usual check function of quantile regression.

15Gala et al. (2020) circumvent this problem by working with observable proxies for productivity.
However, as this paper aims to understand how the underlying productivity process affects firm invest-
ment, we do not proceed with this strategy.

16We could estimate the production function parameters, the productivity process and the investment
policy functions jointly. However, we proceed sequentially as the productivity process is identified from
the productivity series alone. Moreover, in a joint estimation approach, the estimates of the productivity
process will be partly driven by the investment rule.
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Note that the likelihood function can be written in closed form, implying that the E

step is straightforward. In practice, we use a random walk Metropolis Hastings sampler

that targets an acceptance rate of 30 percent. More importantly, the likelihood function

is general enough to admit both the canonical and non-linear productivity processes in

the estimation. This will be useful for the corresponding empirical exercise, as we will

compare the empirical implications of the productivity process on firm investment. We

provide additional details about the estimation algorithm, together with a sketch of non-

parametric identification, in Appendix F.

In practice, we first estimate the effect of firm age on mean log productivity, mean

log capital, and mean investment rates by regressing them on a quartic polynomial of firm

age. The results for the estimation are based on S = 200 iterations, with 200 Metropolis-

Hastings draws per iteration. Inference is based on non-parametric bootstrap, with 200

bootstrap replications.

5.3 Results

We compare the results of the estimated empirical investment policy functions when the

underlying productivity process is non-linear, and when the underlying process is the

canonical productivity process.

Our framework allows us to compute the following objects of interest. First, let us

compute average investment rates as a function of capital, and the stochastic components

of productivity:

E(ijt+1|kjt = k, ηjt = η, εjt = ε) = E(gt(k, η, ε, ujt+1)) (12)

Taking the average derivative of investment with respect to the persistent component of

productivity yields the following object:

φt(k, η, ε) = E
[
∂gt(k, η, ε, ujt+1)

∂η

]
. (13)

The object φt(k, η, ε) reflects the degree to which firms increase or decrease their invest-

ment with respect to productivity shocks. We can define similar objects with respect
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to the transitory component of productivity and capital as well, and call these objects

marginal propensities to invest.

Another set of object of interest that can be computed are the dynamic effects of

productivity shocks on firm investment profiles. For example, the contemporaneous effect

can be computed as:

E
[
∂

∂ν
|ν=τgt(k,Qt(η, ν), ε, ujt+1)

]
= φt(k,Qt(η, τ), ε)

∂Qt(η, τ)

∂ν
. (14)

When the productivity process is non-linear, the derivative effect depends on the marginal

propensity to invest and the quantity ∂Qt(η,τ)
∂ν

, as the model allows for general forms of

heteroscedasticity and skewness. In the empirical analysis, we will report finite-difference

counterparts to the empirical objects we show here.

5.3.1 Marginal propensities to invest

We first discuss the marginal propensities to invest, beginning with the effects on produc-

tivity, which are in Figure 7. Figure 7a shows the average derivative effect, with respect

to zjt, of the conditional mean of ijt, given kjt, zjt, and agejt. This function is evaluated

at different quantiles of kjt and zjt (τcapital and τproductivity, respectively), and is averaged

across agejt. The resulting graphs show an effect that ranges from 0.02 to 0.70. Moreover,

the graphs indicate that the derivative effect is increasing in productivity and decreasing

in capital. This variation in responses suggests the presence of an interaction effect. We

then compare the results that come from simulating the estimated semi-structural model

of firm productivity and investment. The results, which are in Figure 7b, indicate that

the model under the nonlinear productivity process is able to reproduce the patterns that

we observe in the data quite well, with magnitudes that are quite similar (from 0.00 to

0.80). This stands in contrast to the model under the canonical productivity process

(Figure 7c), where our results indicate that the marginal propensities to invest range

from -0.20 to 1.05. The standard errors, which we provide in Figure 22 of Appendix G,

show that the results are precisely estimated.

We then investigate the potential sources of differences between the simulated mod-
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Figure 7: Marginal propensities to invest with respect to productivity

(a) Data

(b) Simulated model with the nonlinear process

(c) Simulated model with the linear process

Note: The above figures show the average derivative effect of productivity on firm investment, evaluated
at different percentiles of capital and productivity, and averaged across age. Top: investment responses
from the data. Middle: investment responses to productivity zjt based on simulated data from the
model with the nonlinear productivity process. Bottom: investment responses to productivity zjt based
on simulated data from the model with the canonical productivity process.
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Figure 8: Marginal propensities to invest with respect to persistent and transitory
productivity

(a) Response to ηjt, nonlinear process (b) Response to ηjt, canonical process

(c) Response to εjt, nonlinear process (d) Response to εjt, canonical process

Note: The above figures show the average derivative effect of productivity on firm investment, evaluated
at different percentiles of capital and productivity, and averaged across age. Top left: investment re-
sponses to persistent productivity ηjt based on the nonlinear process. Top right: investment responses
to persistent productivity εjt based on the nonlinear process. Bottom left: investment responses to
persistent productivity ηjt based on the canonical process. Top right: investment responses to persistent
productivity εjt based on the canonical process.
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els, which we provide in Figure 8. The graphs suggest that our earlier results for the model

under the nonlinear productivity process is mainly driven by the persistent component

ηjt, as can be seen in Figure 8a. Meanwhile, the model under the linear productivity

process is mainly driven by the transitory component εjt, which can be observed on Fig-

ure 8d. The standard errors, which we provide in Figure 19 of Appendix G, confirm this

result.

Aside from calculating the responses of investment to productivity, we also calculate

the average derivative effects with respect to capital, which we show in Figure 20 in

Appendix G. As the results indicate, the results are quite similar. Finally, we show the

fit of the investment distribution predicted by the non-linear model and that of the data,

which we show in Figure 21 of Appendix G. As the graph underscores, we are able to fit

the investment distribution quite well.

5.3.2 Persistent responses to productivity shocks

In this part of the results section, we simulate productivity and investment decisions

according to the non-linear model and show the evolution of productivity and investment

following a persistent productivity shock. With some abuse in terminology, we will call

these paths “impulse responses”. We report the age-specific medians of log productivity

of three types of firms: firms that are hit, at age five, by a large negative shock to the

persistent component of productivity, by a large positive shock, and firms that are hit

by a median shock to the persistent component. We report age-specific medians across

1,000,000 simulations of the model.

Figure 9 shows the impulse response functions with respect to productivity shocks.

The results that we provide here indicate that there are interaction effects between the

initial position of the firm in the productivity distribution and the size and sign of the

shock to the persistent component of productivity. For example, a large positive shock to

the persistent component of productivity is associated with a 25% increase in productivity

for low productivity firms, while a similar shock is associated with a 10% increase for

high productivity firms. We also find interaction effects with respect to large negative
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shocks. Heterogeneity in the persistence of the productivity shock is as well observed in

the different speeds at which the productivity shock decays. This suggests the presence

of asymmetries in the persistence of productivity histories, depending on the previous

history of the firm and the size and magnitude of the shock. Figure 10, meanwhile, shows

the results based on the canonical model of productivity dynamics. In this model, there

are no interaction effects between the firm’s position in the productivity distribution and

the size and magnitude of the productivity shock. As it is clear, the implications of the

non-linear model are different from that of the canonical model of firm dynamics.

Finally, in Figure 11, we report the results of a similar exercise, but we focus on

impulse responses to investment.17 The non-linearities that we observe for productivity

also matter for firm investment. As an example, a large positive shock leads to an

increase in investment by 20 percent for low productivity firms, while it is associated

with an increase in investment by 6 percent for high productivity firms. We find similar

results for large negative shocks.

17In order to simulate investment paths, we need to make use of the law of motion for capital and
specify an initial distribution for capital. For this exercise, we assume that the initial distribution
is Normal, with the mean and variance of firms from 1 to 5 years old estimated in the data. The
depreciation rate is assumed to be the average observed from the data, which is around 0.114.
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Figure 9: Impulse response functions for productivity, non-linear model

(a) τinit = 0.1, τshock = 0.9 (b) τinit = 0.1,τshock = 0.1

(c) τinit = 0.5, τshock = 0.9 (d) τinit = 0.5,τshock = 0.1

(e) τinit = 0.9, τshock = 0.9 (f) τinit = 0.9,τshock = 0.1

Note: The graphs show the difference between a firm hit by a shock τshock at age 5, and a firm hit by a
0.5 shock at the same age. Age-specific medians across 1,000,000 simulations. Model under the flexibile
productivity process.
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Figure 10: Impulse response functions for productivity, canonical model

(a) τinit = 0.1 (b) τinit = 0.1

Note: The graphs show the difference between a firm hit by a shock τshock at age 5, and a firm hit by a
0.5 shock at the same age. Age-specific medians across 1,000,000 simulations. Model under the canonical
productivity process.
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Figure 11: Impulse response functions for investment

(a) τinit = 0.1, τshock = 0.9 (b) τinit = 0.1,τshock = 0.1

(c) τinit = 0.5,τshock = 0.9 (d) τinit = 0.5,τshock = 0.1

(e) τinit = 0.9,τshock = 0.9 (f) τinit = 0.9,τshock = 0.1

Note: The graphs show the difference between a firm hit by a shock τshock at age 5, and a firm hit by a
0.5 shock at the same age. Age-specific medians across 1,000,000 simulations. Model under the flexibile
productivity process.
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6 Structural estimation of capital adjustment costs

Next, we want to gauge the importance of the non-linear productivity process in es-

timating models of firm dynamics. Most research studying firm dynamics with firm

heterogeneity uses linear productivity processes. These papers are trying to gauge the

importance of adjustment costs, financial frictions or misallocation, among many others.

However, given the evidence presented in the previous sections, their results might be

biased since they are not using the right specification of the productivity process. In this

section, we go back to one of the canonical models of capital adjustment costs, that of

Cooper and Haltiwanger (2006), and we try to gauge the importance of the productivity

process for the estimation of the adjustment cost parameters. In order to do so, we fol-

low a similar procedure as they do, targeting a set of investment moments, first with the

non-linear and then with the linear productivity process.

6.1 The Model

Time is discrete and the horizon is infinite. Each period is a year, and there is no

aggregate uncertainty. Firms produce using capital Kit and labor Lit as inputs, with

log productivity zit. We will compare two economies, one where productivity follows the

canonical process, and another one where productivity follows a non-linear process, as

estimated in Section 4. The production function is Cobb-Douglas and features decreasing

returns to scale,

f(zit, Kit, Lit) = exp(zit)K
αK
it LαLit αK + αL < 1. (15)

Labor is a static choice, i.e., it is subject to no adjustment frictions, and it can

be optimally chosen each period. Capital used for production in the current period is

predetermined by investment in the previous period. The timing of the decisions is as

shown in Figure 12.

Firms choose labor in every period to maximize current profits, given their produc-

30



Figure 12: Timing of the problem

t t+ 1

(zit, Kit)

Production
Lit → π̂(zit, Kit)

Investment
Iit → Kit+1

Productivity realizes
zit → zit+1

(zit+1, Kit+1)

tivity and their capital stock

π̂(zit, Kit) = max
{Lit}
{exp(zit)KαK

it LαLit − wtLit} , (16)

where wt > 0 is the wage rate, which is assumed to be the same for all the firms. Hence,

the optimal labor choice is given by

L∗it(zt, Kit) =

[
αL exp(zit) K

αK
it

wt

] 1
1−αL

; (17)

and profits are given by

π∗it(zt, Kit) = (1− αL)

[
αL
wt

] αL
1−αL

[exp(zit) K
αK
it ]

1
1−αL . (18)

Capital is accumulated and therefore, determined by previous investment following

the law of motion

Kit+1 = Iit + (1− δ)Kit, (19)

where Iit is the investment in capital and δ is the depreciation rate of capital.

As in Cooper and Haltiwanger (2006), investment in capital is potentially subject

to both convex and non-convex adjustment costs and transaction costs:

• Convex adjustment costs. As it is standard in the literature, we adopt a quadratic

cost specification

γ

2

(
Iit
Kit

)2

Kit with γ ≥ 0, (20)
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where γ is a parameter governing these costs.

• Non-convex adjustment costs. We also allow for the possibility of non-convex ad-

justment cost, which are independent of the amount of investment and only paid if

the firm invests either a negative or a positive amount:

– Fixed cost.

FCK1

{∣∣∣ Iit
Kit

∣∣∣ > 0.01

}
with FCK ≥ 0, (21)

where FCK is a parameter governing these costs.

– Opportunity cost as loss of current operational profits.

λ π̂(zit, Kit) 1

{∣∣∣ Iit
Kit

∣∣∣ > 0.01

}
with λ ∈ [0, 1), (22)

where λ is a parameter governing these costs.

• Transaction costs. On top of convex and non-convex adjustment costs, firms incur

in transaction costs when selling/buying their capital. Especifically, we consider a

lower recovery price for the capital sold. This considers there might be a gap be-

tween the buying and selling price of capital, which can be due to capital specifities

or a “lemons” problem.

Iit 1 {Iit > 0} + pk Iit 1 {Iit < 0} with pK ∈ [0, 1), (23)

where pK governs the gap between the buying and selling price of capital.

The problem of the firm is then given by

V (zit, Kit) = max
Iit

π̂∗(zit, Kit)− C(zit, Iit, Kit) + β E
[
V (zit+1, Kit+1)

∣∣∣zit] (24)
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subject to

zit+1 = Gt(zit, uit), (25)

Kit+1 = Iit + (1− δ)Kit, (26)

π∗it(zt, Kit) = (1− αL)

[
αL
wt

] αL
1−αL

[exp(zit) K
αK
it ]

1
1−αL , (27)

C(zit, Iit, Kit) =
γ

2

(
Iit
Kit

)2

Kit + FCk 1

{∣∣∣ Ii,t
Kit

∣∣∣ > 0.01

}
(28)

+ λ π̂(zit, Kit) 1

{∣∣∣ Iit
Kit

∣∣∣ > 0.01

}
+ Ii,t 1 {Ii,t > 0} + pK Ii,t 1 {Ii,t < 0} .

Note that, given that there are no financial frictions or any other frictions distorting

agent’s choices, only permanent shocks matter for the investment choice. Firms’ produc-

tivity z follows a process denoted by Gt(zit, uit), which can be an AR(1) process or the

non-linear process estimated in Section 4.

6.2 Estimation and preliminary results

We estimate the model following the strategy in Cooper and Haltiwanger (2006). First,

we set exogenously certain parameters. We set the annual discount factor β at 0.95 and

the annual rate of depreciation δ at 11%, which we compute directly from the CBI data.

We set αK = 1/3 ∗ 0.85 and αL = 2/3 ∗ 0.85, implying a span-of-control parameter of

0.85. So far, we assume there is no opportunity cost of capital, i.e. λ = 0.18

The remaining parameter, i.e. convex adjustment costs γ, the fixed cost FCK , and

the transaction cost pK , are estimated by minimizing the distance between the simulated

moments and the data moments. We target three moments: 1)frequency of positive

investment spikes; 2)serial correlation of investment; and 3)the standard deviation of

investment rates. Table 3 shows the main results of this analysis, with the parameters

used for estimation (first panel), the targeted moments (second panel) and the non-

targeted moments (third panel). The first column shows the data moments, and the first

two columns show non-linear (first column) and the linear (second column) productivity

18This is because including the fixed cost and the convex adjustment cost is very similar to the
opportunity cost loss.
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processes economies with the parameters that minimize the loss function of the non-linear

economy. The third and fourth columns show the moments of the economies with non-

linear and linear productivity processes respectively, with the parameters that minimize

the loss function of the linear economy.19. We can first compare the parameters we

obtain when using different productivity processes. When using the linear productivity

process, the fixed cost of investing is significantly larger than when using the non-linear

productivity process. The convex adjustment cost parameter is significantly lower when

using the linear process, and the price of selling capital is slightly lower. Hence, if we would

be using the linear process to gauge the magnitude of capital adjustment costs in the

Spanish economy, we would be understating the importance of convex adjustment costs

by more than half, and overstating the magnitude of fixed adjustment costs significantly.

The model with non-linear productivity process matches the targeted moments

fairly well (see first column), but with these parameters, the economy with linear produc-

tivity process matches poorly the moments, especially the autocorrelation of investment,

which is much larger than in the data (second column). Regarding non-targeted moments,

the model has a hard time to match the spike rate of negative investment, especially be-

cause it is particularly high in our data. Nonetheless, the negative spike rate is larger with

the non-linear productivity process than with the AR(1) process. The model also falls

short in matching the inaction rate, which is half of the inaction rate in the data. In the

case of the AR(1) process, the inaction rate is still much smaller. The model with non-

linear productivity overpredicts the fraction of observations with negative investment,

although it is closer to the data than in the case of the AR(1) process. The non-linear

productivity model also over predicts slightly the average investment rate, although less

than the AR(1) model. Finally, there is a higher correlation of the profit shocks and

investment in the model than in the data, but still the non-linear productivity process is

closer to the data than the AR(1). Finally, the distribution of investment rates is more

concentrated on the left tail and less concentrated on the right tail than in the data, but

19In each economy, we introduce a hicks-neutral productivity term such that the average size (in
employment) of firms in all the economies is constant. This hicks-neutral term is 1, 1.25, 0.998 and 1.245
respectively for each column
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Table 3: Targeted and untargeted moments

Targeting NL Targeting AR(1)

Data NL AR(1) NL AR(1)

Parameters

γ 0.123 0.123 0.057 0.057
FCk 0.085 0.085 0.134 0.134
pk 0.798 0.798 0.733 0.733

Loss function 1.142 899.673 2001.341 434.087

Targeted moments

Spike rate: positive investment 0.159 0.150 0.202 0.127 0.159
Serial correlation of investment rates 0.150 0.150 0.430 -0.099 0.351
SD investment rate 0.631 0.626 0.533 1.001 0.682

Non-targeted moments

Spike rate: negative investment 0.204 0.088 0.068 0.087 0.045
Frac of obs with neg investment 0.645 0.742 0.774 0.770 0.828
Inaction rate: investment 0.057 0.026 0.002 0.009 0.001
Average investment rate 0.073 0.099 0.088 0.168 0.114
Correlation profit shocks and investment 0.100 0.364 0.418 0.314 0.418
p10(inv rate) -0.301 -0.187 -0.119 -0.184 -0.117
p25(inv rate) -0.179 -0.118 -0.113 -0.118 -0.112
p50(inv rate) -0.065 -0.103 -0.107 -0.105 -0.108
p75(inv rate) 0.061 0.006 -0.100 -0.022 -0.102
p90(inv rate) 0.490 0.704 0.839 0.538 0.933

Notes: The table shows the outcomes of the model for the same parameters under non-linear productivity process (NL),

and the AR(1) process. The first two columns use the parameters that minimize the distance between the targeted data

moments and those in the economy with non-linear productivity process (NL).The last two columns use the parameters

that minimize the distance between the targeted data moments and those in the economy with linear productivity

process (AR(1)).
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the match is significantly better than with the same parameters in the AR(1) process.

When we are targeting the moments in the economy with linear productivity pro-

cess (third and fourth column), the match of the moments improves significantly (see

loss function of column four compared to column two), but the model still has difficulties

in matching the low serial correlation of investment rates, despite the high fixed cost

of investing. The non-linear economy performs poorly with these parameters: the au-

tocorrelation of investment rates is very low and becomes even negative with the lower

convex adjustment costs and the higher fixed cost of investing, and the standard deviation

of investment increases significantly. Regarding the untargeted moments, the economy

with non-linear productivity process even outperforms the linear one in several dimen-

sions: distribution of investment rates, negative spike rates, fraction of observations with

negative investment and correlation of profit shocks and investment.

Summing up, estimating capital adjustment costs with the non-linear productivity

process deliver significantly different results than with the linear productivity process,

with higher convex costs and lower fixed cost of investing when using non-linear pro-

ductivity process. Furthermore, it matches better the overall investment moments, both

targeted and untargeted. These results point at the importance of utilizing the right

productivity process when trying to quantify the importance of capital adjustment costs

in particular, and this can be extrapolated to several quantification exercises of different

nature done with models of firm dynamics in general.

7 Conclusion

This paper proposes a richer stochastic process for firm productivity that features a

transitory and a persistent component, allows for nonlinearities in persistence, and non-

Gaussian shocks. We find that the estimated nonlinear productivity process accurately

captures the observed dynamics in firm productivity data. The estimated productivity

dynamics emphasises varying persistence and conditional skewness across productivity

history, which are at odds with the canonical AR(1) productivity representation used in

the literature.
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We then estimate an empirical investment rule under the two productivity dynamics

processes. The investment responses to persistent productivity shocks are more prominent

when the underlying process is nonlinear compared to the canonical one. We finally

estimate a firm investment model that features both convex and non-convex adjustment

costs. Our findings indicate that the estimated model under the richer productivity

dynamics implies closer-to-data investment dynamics and a different characterisation

of the adjustment costs nature with lower fixed costs than the canonical productivity

representation.
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A Data appendix

This appendix provides further details about our primary dataset —Central de Balances

Integrada (CBI) of Banco de España (BdE)—, the cleaning procedure that led to the final

sample, the final sample representativeness in the economy, and the investment statistics

used in the model section.

A.1 Construction of the Final Sample

The CBI contains firm-level data of Spanish firms since 1995. The data has an adminis-

trative nature as limited liability firms have the legal obligation to deposit their annual

accounts (balance sheet, income statement and annual report) at the Commercial Reg-

istry every year. BdE has had an agreement with the Commercial Registries to access

that information since 1995. It compiles and homogenizes the information received in a

unique dataset called CBI. The lack of capacity and coordination among the Commercial

Registries result in lower coverage for the first years of the agreement. Therefore, we

focus on the period from 1999 —coverage stabilizes at a high level— to 2017 —last year

with a final sample at the writing of the paper—.

We use the following raw variables

• id: Firm identifier,

• cif: Fiscal identifier,

• any: Year of the annual accounts,

• anyconst: Year the firm was set up,

• cnae09: Sector of the main activity at the 4 digits of the Clasificación Nacional de

Actividades Económicas (2009-CNAE),

• grup: Indicator of the firm ownership,

• production: Value of production,

• materials: Value of intermediate inputs,
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• wagebill: Total expenditure in employment,

• totalassets: Value of the total assets of the firm,

• longtermassets: Value of the long-term assets,

• intangibles: Value of the long-term of the intangible assets,

• productive: Value of long-term assets used in production,

• shorttermassets: Value of the short-term assets,

• workers: Number of employees in full-time equivalence units,

to construct our main variables. The firm’s age is defined as the difference between

any and anyconst variables. The sector of the firm corresponds to the first 2-digits

of the cnae09 variable. Value-added is given by the difference between the production

and materials variables. We define capital as the sum of the intangibles and productive

variables. Finally, labor is given by the wagebill variable. We construct price indexes with

2006 base year to deflate the nominal variables at the 2-digits 2009-CNAE disaggregation.

We use the value-added price index computed with the information from the National

Accounts to deflate production, value-added, and materials. We use the investment price

index to deflate the capital variable. We also deflate the labor variable using value-added

price index.

We focus our analysis on limited liability firms that are not held by the public sector.

We identify limited liability firms using the cif —Spanish fiscal identifier— variable. Firms

with a cif starting by A are large limited liability corporations, while those with a cif

starting by B are small limited liability firms. We identify the firms not controlled by the

public sector with the information in the grup variable. We then create flags and drop

those observations for which the sector is not identified, age is not identified or is 0, have

0 or negative production, value-added, materials, capital, labor, or wage bill.

Some firms are purely instrumental; their purpose is to reduce the tax bill of their

owners and hide heritage to the fiscal authorities. Those firms usually have negligible

economic activity. Therefore, we restrict our attention to firms with a reasonable level of
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activity defined as production larger or equal to 1,000 e, value-added larger or equal to

1,000 e, materials larger or equal to 100 e, capital larger or equal to 500 e, employment

larger or equal to 0.25, and wage-bill larger or equal to 3,000 e; all in real 2006 e.

We next implement the following cleaning strategy. First, we do a winsorization of

bottom and top wages at 1%, across years, within years and sector-year. This step detects

wrong units by linking a monetary —the wage bill— and non-monetary —the number of

workers—. Second, we search for rank discrepancies in the distributions of value-added,

materials, capital, and labor, i.e. a firm in the first decile of the value-added distribution,

but in the top percentile of the materials distribution, or a firm in the top decile of the

value-added distribution, but in first percentile of the materials distribution. Third, we

do a winsorization of bottom and top ratios at 1%, both within and across sectors, of

value-added (va) with other variables —va/m, va/k, va/l—, materials (m) with other

variables —m/k, m/l—, capital (k) with other variables —k/l—, and labor (l). Table 5

has a summary of all the steps to go from the raw data to the final sample. The final

sample has contains 7,032,977 firm-year observations from 1,148,756 different firms.

Table 5 reports the summary statistics of the main variables used in the table. And,

table 6 summarizes the panel dimension of the data.

A.2 Representativeness

[TBC]

A.3 Investment Data

We now lay down the steps to recover investment data from the CBI. Consider the capital

accumulation equation of a firm i from period t− 1 to period t

Ki, t = Ki, t−1 (1 − δi, t) + Invi, t,

where δi, t is the depreciation rate at which capital has depreciated in firm i from period

t− 1 to period t, and Invi, t is the investment undertaken for firm i from period t− 1 to

period t. After rearranging, the investment rate of firm i from period t− 1 to period t is
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Table 4: Summary of the cleaning procedure

Cleaning Steps Version 7

Raw Dataset 17,697,126

Flags on 9,393,862

Sector 1,361,472
Age 1,277,586
Production 4,270,574
Value Added 4,686,449
Materials 1,651,509
Capital 3,798,581
Labor 6,442,065
Wage Bill 5,598,756

Intermediate Sample 8,303,264

Sample selection I on 65,639

No Limited Liability 54,054
Public Sector 12,477

Intermediate Sample 8,237,625

Sample selection II on 279,425

Production 8,314
Value Added 28,307
Materials 1,335
Capital 148,581
Labor 69,448
Wage Bill 78,795

Intermediate Sample 7,958,200

Cleaning on 925,223

Wages 203,963
Rank Discrepancies 14,118
Ratios 771,950

Final Sample 7,032,977

Note: We report the summary of the steps to go from the raw data to the final sample. Data from the
Spanish Central de Balances, from 1999 to 2017.
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Table 5: Summary of panel dimension of the final sample

Variable Min P25 P50 P75 Max Mean Std. Dev.

Year 1999 2005 2009 2013 2017 2008.96 5.11
Age 1 5 10 17 149 11.89 9.00

Value Added 1.00 51.35 117.99 291.11 8,072,300 616.74 13,736.49
Materials 0.56 71.97 198.53 613.10 1.71e+7 1,736.04 42,743.29
Capital 0.50 18.41 67.34 252.99 1.61e+7 816.91 36,081.80
Labor 3.00 41.81 93.91 224.15 2,634,868 413.48 6,818.45

Note: We report the summary statistics of the final sample. Data from the Spanish Central de Balances,
from 1999 to 2017.

Table 6: Summary of the cleaning procedure

Number of obs. Number of firms with longest spell at least
Sector Firm-Year Firms 2 periods 3 periods 4 periods 5 periods

Smallest 124 36 26 21 5 3
2nd Smallest 1,333 276 212 152 118 88
3rd Smallest 3,667 424 375 324 291 186
Largest 1,080,605 198,227 153,401 119,405 94,900 75,608

All 7,032,977 1,148,756 922,161 741,756 609,542 503,036

Note: We report the summary of the panel dimension length of the final dataset. Data from the Spanish
Central de Balances, from 1999 to 2017.
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given by

invi, t ≡
Invi, t
Ki, t−1

=
Ki, t − Ki, t−1

Ki, t−1

+ δi, t.

The investment rate (gross) has two components:

• Net investment rate:
Ki, t − Ki, t−1

Ki, t−1
, which is observable from the balance sheet

information. We winsorize the two tails at the 1% level.

• Depreciation rate: δi, t, which is not observable from the balance sheet information.

We recover the depreciation rate (δi, t) using information from the income statement.

Particularly, we use amortizations, depreciation and provisions. This has some caveats.

First, it contains the amortization of all the assets and not only our measure of capital.

Second, it contains negative changes in prices of all assets, i.e. depreciation. Finally, it

contains savings due to likely events that the firm may face in the future, i.e. provisions.

Unfortunately, we do not have information to disentangle them. Taking into account

that our measure of capital is wide and depreciations and provisions are barely used, we

correct the depreciation rate as follows. First, Define the provisional depreciation rate as

follows

δprovi, t =
amortizations, depreciation and provisions from period t− 1 to t

Ki, t−1

.

We next set to missing the values that are likely to contain other things than just amor-

tization. If the δprovi, t is smaller to 0.02 or bigger than 0.2, they imply 50 and 5 years

respectively of capital life expectancy under a linear system. Then, we run a regression

of δprovi, t on a 3-order degree polynomial of age, capital (in logs) and labor (wage bill in

logs) in period t − 1, with all the interactions for each sector-year level. We use this

auxiliary model to predict the depreciation rate for all the firms. Finally, we reset the

bounds of the predicted depreciation rate at the firm level to 0.02 and 0.20. This only

happens very rarely 0.33 firms of each 1,000 for each bound. An statistic summary of the

resulted depreciation rate δi, t is in table 7.

Table 8 reports several statistics of the net investment rate. Mean, standard de-

viation and autocorrelation, correlation with the productivity in period t − 1, in logs,
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Table 7: Summary of panel dimension of the final sample

Variable P1 P25 P50 P75 P99 Mean Std. Dev. Auto-corr

δi, t 0.042 0.096 0.119 0.134 0.158 0.113 0.027 0.929

Note: We report the summary statistics of the panel length in the final sample. Data from the Spanish
Central de Balances, from 1999 to 2017.

ρ(invt, at−1), correlation with the productivity shock from period t − 2 to period t − 1,

ρ(invt, ∆At−2), where ∆At−2 = At−1 − At−2

At−2
, inaction rate defined as | invi, t | ≤ 0.01,

negative investment rate, invi, t < −0.01 and negative spyke, invi, t ≤ −0.2, pos-

itive investment rate, invi, t > 0.01 and positive spyke, invi, t ≥ 0.2, and finally,

some percentiles of the invi, t distribution conditional on not being in inaction rate,

| invi, t | ≤ 0.01. Figure 13 plots the histogram of net investment rates. Finally, table 9

and figure 14 show the summary statistics and the histogram for gross investment rates.

Table 8: Summary statistics of net investment rates

Statistic Value Inaction Rate 5.7%

Mean(invt) 0.073 Negative 64.5% P10 -0.301
SD(invt) 0.631 Spyke (-) 20.4% P25 -0.179
ρ(invt, invt−1) 0.150 Positive 29.9% P50 -0.065
ρ(invt, at−1) 0.180 Spyke (+) 15.9% P75 0.061
ρ(invt, ∆At−2) 0.100 P90 0.490

Note: We report the summary statistics of the net investment rates. Data from the Spanish Central de
Balances, from 1999 to 2017.

Table 9: Summary statistics of gross investment rates

Statistic Value Inaction Rate 6.0%

Mean(invt) 0.185 Negative 34.5% P10 -0.175
SD(invt) 0.634 Spyke (-) 7.7% P25 -0.060
ρ(invt, invt−1) 0.154 Positive 59.6% P50 0.048
ρ(invt, at−1) 0.180 Spyke (+) 21.4% P75 0.171
ρ(invt, ∆At−2) 0.108 P90 0.614

Note: We report the summary statistics of the gross investment rates. Data from the Spanish Central
de Balances, from 1999 to 2017.
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Figure 13: Histogram of net investment rates

Note: The figure shows the histogram of the net investment rates. Data from the Spanish Central de
Balances, from 1999 to 2017.

Figure 14: Histogram of gross investment rates

Note: The figure shows the histogram of the gross investment rates. Data from the Spanish Central de
Balances, from 1999 to 2017.
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B Estimation of the production function

To estimate TFP, we appeal to the estimation procedure of Ackerberg et al. (2015) (here-

after referred to as ACF), albeit with slight modifications. The choice of this estimation

procedure, as opposed to other popular procedures such as Olley and Pakes (1996) and

Levinsohn and Petrin (2003), is due to the flexibility of ACF to deal with the possibility

of adjustment costs in capital and labor.20 We outline the assumptions for our estimation

here:

1. Information set: The information set Ωjht includes past and current productivity

shocks {zjhτ}tτ=0, but not future ones. Transitory shocks satisfy E[εjht|Ωjht] = 0.

2. First-order Markov: Individual productivity zjht evolves according to a first-order

Markov process known by the firms, i.e.,

p(zjht|Ωjht) = p(zjht|zjht−1). (29)

3. Timing of input choice: Capital at time t is determined by the law of motion

kjht = xjht−1 + (1− δ)kjht−1, (30)

where xjht−1 is investment at t− 1 and δ is the depreciation rate. Labor input has

potential dynamic implications and is chosen at period t− 1.21

4. Intermediate inputs: Intermediate inputs are given by

mjht = ft(kjht, ljht, zjht), (31)

where the function ft(kjht, ljht, zjht) is invertible and strictly increasing in zjht.

From the assumptions outlined above, ACF propose to estimate the parameters of

the production function via the following two-step procedure:

20An equally flexible estimation procedure is the one proposed by Gandhi et al. (2020), who use the
optimization conditions implied by the firm problem to achieve identification of the structural parameters.
However, this procedure requires the availability of price data, which we do not have.

21This is important to account for the duality of the Spanish labor market.
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1. First stage. Invert the conditional input demand function and perform an ordinary

least squares (OLS) regression of yjht on ljht, kjht, and f−1
t = ϕt(kjht, ljht,mjht):

yjht = β0,h + βl,hljht + βk,hkjht + ϕt(kjht, ljht,mjht) + εjht ≡ Φt(kjht, ljht,mjht) + εjht

(32)

2. Second stage. The first-order Markov assumption on productivity allows us to write

the following expression:

ωjht = g(ωjht−1) + ujht.

Plugging this into the production function

yjht = β0,h + βl,hljht + βk,hkjht + g(ωjht−1) + εjht + ujht,

we will be able to obtain the following moment condition:

E(εjht + ujht|Ωjht−1) = E(yjht − β0,h − βl,hljht − αk,hkjht−

g(Φt−1(kjht−1, ljht−1,mjht−1)− α0 − αlljht−1 − αkkjht−1)|Ωt−1) = 0. (33)

Because the estimation problem in (33) is non-linear in nature and to reduce the dimen-

sionality, ACF propose a concentrated GMM procedure. Specifically, for a given guess of

βl,h and βk,h, we compute an estimate of β0,h + ωjht as:

̂β0,h + ωjht(βl,h, βk,h) = Φt(kjht, ljht,mjht)− βl,hljht − βk,hkjht.

We can then regress ̂β0,h + ωjht(βl,h, βk,h) on a non-parametric function of ̂β0,h + ωjht−1(βl,h, βk,h)

and calculate the residual χt(βl,h, βk,h). Finally, we can estimate the parameters of the

production function using the following unconditional moment conditions:

E

(
χt(βl,h, βk,h)⊗

(
kjht

ljht−1

))
= 0. (34)

As discussed earlier in the main text, we modify the estimation procedure suggested

by ACF to take into account (i.) potential finite sample problems and (ii.) the effect
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of aggregate shocks. Kim et al. (2019) show that the proposed estimation procedure of

ACF suffers from a “spurious minimum” problem in that for some initial values, i.e., the

resulting parameter estimates are a local minimum and not the global minimum.22 Mean-

while, Hahn et al. (2020) show that in the presence of aggregate shocks, the parameters

βk,h and βl,h are biased in that the function g(·) is not independent of time. Moreover,

they show that the usual procedure of introducing time dummies does not remove the

bias coming from the presence of the aggregate shock.

To deal with these concerns, we modify the proposed estimation procedure of ACF,

which we outline below:

1. Modified first stage. Regress yjht on Φ̃t(kjht, ljht,mjht), which is the non-parametric

function Φt(kjht, ljht,mjht) interacted with time dummies, following Hahn et al.

(2020), via OLS:

yjht = Φ̃t(kjht, ljht,mjht) + εjht. (35)

2. Modified second stage. As in Ackerberg et al. (2015), we proceed with a concentrated

GMM procedure, wherein we concentrate out the parameter β0,h and the parameters

of the polynomial function g(·) to minimize the dimensions of the non-linear search.

In this regard, we proceed with the following estimation:

(a) Obtaining residuals χt(βl,h, βk,h). We compute an estimate of β0,h + ωjht from

a given guess of βl,h and βk,h via the following equation

̂β0,h + ωjht(βl,h, βk,h) = Φ̃t(kjht, ljht,mjht)− βl,hljht − βk,hkjht.

and regress ̂β0,h + ωjht(βl,h, βk,h) on a third-order polynomial of ̂β0,h + ωjht−1(βl,h, βk,h).

From this estimation, we obtain residual χt(βl,h, βk,h).

(b) Estimating βl,h and βk,h. Once we obtain the residual χt(βl,h, βk,h), we esti-

mate the parameters βl,h and βk,h with the following overidentified moment

22Moreover, in the case where the technology is constant returns to scale, it can be shown that there
is a global identification problem in β̃k = βl + βk and β̃l = 0.
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conditions:

E

χt(β0,h, βl,h, βk,h)⊗


1

kjht

ljht−1

ljht−2

kjht−1



 = 0. (36)

Interacting the non-parametric function with the time dummies is sufficient to re-

move the aggregate shocks from the estimation of the production function parameters and

recover the firm-specific productivity series, see Hahn et al. (2020), if the interest of the

researcher is in these objects.23 The moment conditions in (36) mirror the ones in Kim

et al. (2019), who suggest the use of lagged instruments to help with the identification of

the parameters of the production function. These moment conditions are also consistent

with a model where firms face adjustment costs in capital and/or labor.

Given the moment conditions in equation (36), we utilize the CU-GMM procedure

proposed in Peñaranda and Sentana (2015) to estimate the structural parameters βl,h and

βk,h. In particular, this procedure regresses 1s on the moment conditions with an OLS

routine that is robust to singularities in the covariance matrix of the influence functions

implied in (36).24 We then obtain the standard errors of the parameter estimates via

non-parametric and parametric bootstrap, with 500 replications.

C Estimating the non-linear productivity process

The following section provides a more formal description of the non-linear productivity

process and a heuristic identification argument of productivity’s persistent and transitory

components.

23Of course, if we wanted to recover the aggregate shock as well, we would need to model the dis-
tribution of the aggregate shock more formally. However, as it is not of interest here, we pursue this
procedure.

24In simulation exercises not reported here, we compare the performance of our proposed estimation
procedure with those advocated by ACF using a modification of the data generating process in the
published version of the paper. We find that our proposed modification works well in finite samples.
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C.1 Identification argument - sketch

In this part of the appendix, we sketch the identification arguments for the non-linear

productivity process. The starting point for the identification of the productivity process

is the observation that the assumptions underlying Ackerberg et al. (2015) permit the

identification of the production function parameters βk and βl. Given identification of

these two parameters, we can then extract the productivity series zit and assume that it

is known, or rather, it is observed25.

Given the assumptions we made for the persistent component η and the transitory

component ε, we can apply the arguments in Arellano et al. (2017) for non-parametric

identification. That is, assuming that the distributions of (zjt|zjt−1) and (ηjt|zjt−1) satisfy

completeness conditions, and given that in a model with three periods of log-productivity,

(zj1, zj2, zj3) are conditionally independent given ηj2, it follows that the marginal distri-

butions of εjt are non-parametrically identified.26 Serial independence of the ε then gives

non-parametric identification of the joint distribution (εj2, εj3, . . . , εjT−1). As long as the

characteristic functions of the transitory components do not vanish in the real line. The

joint distribution (ηj2, ηj3, . . . , ηjT−1) are identified via a deconvolution argument. Subse-

quently, the distributions f(ηjt|ηjt−1) are identified for t = 3, . . . , T − 1 and the marginal

distribution of ηj2 is identified. Hence, we would need T = 4 to identify at least one

Markov transition.

C.2 Estimation algorithm

As it was described in the main text, the estimation algorithm that we pursue follows

Arellano et al. (2017), who use a stochastic EM algorithm. In particular, for an initial

guess θ̂0, we iterate on the following two steps on s = 1, 2, . . . until convergence of the θ̂s

process:

25The estimation of the production function parameters is analogous to estimating the deterministic
components of log-earnings in the case of the estimation of the earnings process.

26Completeness in this context is operator injectivity. For example, the first condition requires that
the only function h that satisfies the equation E[h(zjt)|zjt−1] = 0 is h = 0. In effect, we just need that
there is some statistical dependence between ηjt and ηjt−1, without specifying the form of dependence.
Otherwise, we will be unable to distinguish the two components from each other.
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1. Stochastic E-step: Draw observations of the persistent and transitory components

η
(m)
j = (η

(m)
j , . . . , η

(m)
jT ) from the posterior distribution f(·; θ̂s)

2. M-step: Compute

θ̂s+1 =
N∑
j=1

M∑
m=1

R(zj, η
(m)
j ; θ) (37)

wherein R(·) is a particular known objective function.

The E-step is straightforward, as the likelihood is available in closed form, see

Arellano et al. (2017) for the complete form of the likelihood. In practice, we use a

random-walk Metropolis-Hastings sampler with a target acceptance rate of 25 to 30 per-

cent. To estimate the productivity process, we would need to compute a sequence of

quantile regressions for the persistent component, its initial distribution, and the transi-

tory component of productivity. In particular, to update the following set of parameters:

aηk(τl) (the parameters of the persistent component), aη1
k (τl) (the parameters of the ini-

tial persistent component), and aε1(τl) (the parameters of the transitory component), we

estimate the following quantile regressions:

min
aη1(τl),...,a

η
K(τl)

N∑
j=1

T∑
t=2

M∑
m=1

ρτl

(
η

(m)
jt −

K∑
k=1

aηk(τl)fk(η
(m)
jt−1, agejt)

)
for l = 1, . . . , L, (38)

min
aη11 (τl),...,a

η1
K (τl)

N∑
j=1

M∑
m=1

ρτl

(
η

(m)
j1 −

K∑
k=1

aη1
k (τl)fk(agej1)

)
for l = 1, . . . , L, and (39)

min
aε1(τl),...,a

ε
K(τl)

N∑
j=1

T∑
t=1

M∑
m=1

ρτl

(
zjt − η(m)

jt −
K∑
k=1

aεk(τl)fk(agejt)

)
for l = 1, . . . , L, (40)

in which ρτ (u) = u(τ − 1 {u ≤ 0}) is the usual “check” function of quantile regression.

In practice, we first estimate the age effect of productivity by a linear regression on a

quartic polynomial in age. We then impose that εit is uncorrelated with age, although we

allow for age effects in the variance and quantiles of εit. We take M = 1, stop the chain

after a large number of iterations, and report an average across the last S̃ values, where

S̃ = 1
S̃

∑S
s=S−S̃+1 θ̂

s. The results for the productivity parameters are based on S = 500

iterations, with 200 Metropolis-Hastings draws per iteration, and we take S̃ = S
2
. We

start the algorithm from different initial parameter values, and select the estimates that
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yield the highest log-likelihood. The non-selected values are similar to the ones that we

report in the paper.

For inference, we perform both parametric and non-parametric bootstrap with 500

bootstrap replications.

D Estimating the canonical linear process

D.1 Identification

A more formal statement of the assumptions behind the canonical productivity process

are the following:

1. |ρ| < 1.

2. ηjt ⊥ ξit ⊥ εjt.

3. ηjt ∼ iid N(0, σ2
η), ξjt ∼ iid N(0, σ2

ξ ), εit ∼ iid N(0, σ2
ε)

Given these assumptions, we can formally identify the parameters of interest in this

model from the autocovariance function alone, following standard arguments. Identifica-

tion of the parameters requires four periods of data. The arguments for identification are

reproduced below.

First, we can identify ρ from the slope:

Cov(ξj0, ξj3)− Cov(ξj0, ξj2)

Cov(ξj0, ξj2)− Cov(ξj0, ξj1)
=
ρ3σ2

ξ − ρ2σ2
ξ

ρ2σ2
ξ − ρσ2

ξ

=
(ρ3 − ρ2)(σ2

ξ )

(ρ2 − ρ)(σ2
ξ )

= ρ.

The difference between the covariances allows us to obtain σξ:

Cov(ξj0, ξj2)− Cov(ξj0, ξj1) = ρ2σ2
ξ − ρσ2

ξ

= (ρ2 − ρ)(σ2
ξ ).
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The difference between the variances allows us to obtain ση:

Var(ξj1)− Var(ξj0) = (ρσ2
ξ + σ2

η + σ2
ε)− (σ2

ξ + σ2
ε)

= (ρ− 1)σ2
ξ + σ2

η.

Finally, the variance allows us to identify σε:

Var(ξj0) = σ2
ξ + σ2

ε .

D.2 Estimation

The standard estimation strategy is to use minimum distance estimation, where the

goal is to choose the parameters that minimize the distance between the empirical and

theoretical moments. An alternative, which we implement here, is to estimate the pa-

rameters via pseudo-maximum likelihood estimation, following Arellano (2003). That is,

if uj ∼ N (0,Ω(θ)), then the pseudo maximum likelihood estimator of θ solves:

θ̂PML = arg min
c

{
log det(Ω(c)) +

1

N

N∑
j=1

ûjΩ(c)−1ûj

}
.

This is equivalent to:

θ̂PML = arg min
c

{
log det(Ω(c)) + tr(Ω(c)−1Ω̂)

}
,

where tr is the trace of the resulting matrix, and Ω̂ =
∑
û′jûj. We can then use the

asymptotic covariance matrix to compute the standard errors.

The assumptions on the stochastic productivity process imply

zjt = ρt−1ηj1 +
t∑

k=2

ρt−kξjk + εjt (41)
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from which the following moments

var(zjt) = ρ2(t−1)σ2
η1 +

t∑
k=2

ρ2(t−k)σ2
ξ + σ2

ε , and (42)

cov(zjt, zjt−1) = ρ2t−1σ2
η1 +

t∑
k=2

ρ1+2(t−k)σ2
ξ (43)

allow us to identify the parameters.

E Additional results for the productivity process

Figure 15: Conditional skewness, productivity process.

Note: These graphs provide the conditional skewness measures implied by the nonlinear productivity
process and the canonical productivity process. Top left: Data (blue) and simulated data (green) from
the model under the nonlinear productivity process. Top right: Conditional skewness of η, nonlinear
productivity process. Bottom: Conditional skewness of η, canonical productivity process.
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Figure 16: Graphs of nonlinear persistence, nonparametric bootstraps.

Note: These graphs provide the 95% confidence bands obtained from a nonparametric bootstrap for the
nonlinear persistence measure as a function of the initial position in the productivity distribution and
the shock. Top: Data. Middle: Simulated data from the model under the nonlinear productivity process.
Bottom: Nonlinear persistence of η.
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Figure 17: Graphs of conditional skewness, nonparametric bootstraps.

Note: These graphs provide the 95% confidence bands obtained from a nonparametric bootstrap for the
conditional skewness measure as a function of the initial position in the productivity distribution. Top:
Data. Bottom: Simulated data from the nonlinear productivity process.
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F Empirical investment policy functions

F.1 Identification argument - sketch

To proceed with the identification of the investment policy function, we make the following

assumptions.

For all t ≥ 1:

1. ujt+s and εjt+s are independent of (kj1, . . . , kjt), (ηj1, . . . , ηjt−1), and (zj1, . . . , zjt−1).

εj1 is independent of kj1 and zj1.

2. Conditional on (kjt, ijt, ηjt, εjt),capital at t+1 kjt+1 is independent of (kj1, . . . , kjt−1),

(ij1, . . . , ijt−1), (ηj1, . . . , ηjt−1), and (zj1, . . . , zjt−1).

3. The cost shifter νjt in the investment policy function is independent of ηj1, (ujs, εjs)

for all s 6= t, and (kj1, . . . , kjt).

The first part of this assumption requires that current and future productivity

shocks to be independent of current and past firm capital. At the same time, we allow

some dependence between the initial capital distribution and the persistent component of

productivity. This is important because capital accumulation upon entry may be corre-

lated to past productivity shocks through the firm’s previous investment decisions. The

second part of the assumption is a first-order Markov assumption on capital accumula-

tion. This is satisfied by the law of motion for capital in the standard firm investment

model. Finally, the third part of the assumption requires that cost shifters are serially

independent, independent of the productivity components, and independent of past and

future capital. In particular, this assumption rules out unobserved heterogeneity in firm

investment.

First period. Identification of the investment policy function follows an induction ar-

gument. We begin with the first period investment policy function, which we can write

as the following:

f(i1|z, k1) =

∫
f(i1|k1, η1, z)f(η1|k1, z)dη1. (44)
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Note that, if k1 and η1 are independent given z, an injectivity argument will pro-

vide identification of the first-period investment policy rule.27 However, this conditional

independence restriction is unlikely to hold when firms enter the sample. To show that

this policy function is identified, then we would need to show identification of f(k1|z).

Given the model assumptions, we can show that this can be written as:

f(k1|z) =

∫
f(k1|η1)f(η1|z)dη1. (45)

Because we can identify f(η1|z) from the productivity data alone, by complete-

ness of this distribution, f(k1|η1) is identified. Identification of this density implies

that f(η1|k1, z) is identified. Hence, under completeness in (zj1, . . . , zjt) of (ηj1|kj1, z),

f(i1|k1, η1, z) and f(i1, η1|k1, z) are thus identified.

Second period. We next proceed with the identification of second-period capital. No-

tice that we can write the density of f(k2|k1, i1, z, η1) as:

f(k2|k1, i1, z) =

∫
f(k2|k1, i1, z, η1)f(η1|k1, i1, z)dη1 (46)

Provided that the distribution (ηj1|kj1, ij1, z) is complete in z (notice that the den-

sity f(η1|k1, i1, z) is identified given the arguments above), the density f(k2|k1, i1, z, η1)

is non-parametrically identified. Moreover, we can show that:

f(η2|k1, z, k2, i1) =

∫
f(η2|η1, k1, z, k2, i1)f(η1|k1, z, k2, i1)dη1 (47)

and because we can identify f(η1|k1, z, k2, i1) from the previous argument, under com-

pleteness of this density on (zj1, . . . , zjt), we can show that f(η2|η1, k1, z, k2, i1) is identi-

fied. Finally, we can then show that:

f(i2|k2, k1, i1, z) =

∫
f(i2|k2, η2, z)f(η2|k1, z, k2, i1)dη2 (48)

27To see this, it suffices to show that because of independence of η1 and k1, the density above collapses
to f(η1|z), which we can identify from productivity alone. Hence, by operator injectivity, the first-period
investment rule is non-parametrically identified.
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is non-parametrically identified.

Finally, through an induction argument, and given the first-order Markov assump-

tions, we can show identification from periods three onwards using the same arguments.

As has been argued in Arellano et al. (2017), one can think of the identification argu-

ments through their link to non-parametric IV problems. For example, in the investment

policy function, the endogenous regressor is ηj1 and conditional on ij1 and kj1, the z’s

can be thought of as instruments for the endogenous regressor. In subsequent periods,

together with the leads and lags of log productivity, we use lags of capital and investment

as instruments in a non-parametric sense.

F.2 Model restrictions

The empirical policy function of investment implies the following model restrictions:

aI0(τl), . . . , a
I
K(τl) = arg min

aI0(τl),...,a
I
K(τl)

T∑
t=1

E

[∫
ρτl

(
ijt+1 −

K∑
k=0

aIk(τl)fk(kjt, ηjt, εjt, agejt+1)

)

× gj(ηTj ; θ̄, µ̄)dηTi

]
(49)

where gj(η
T
j ; θ̄, µ̄) = f(ηTj |iTj , kTj , zTj ; θ, µ) denotes the posterior density of the persistent

component of productivity given investment, capital, and productivity data.

The tail parameters satisfy the following model restrictions (where we suppress the

conditioning on age for conciseness):

τ− =

∑T
t=1 E

[∫
1
{
ijt+1 ≤

∑K
k=0 a

I
k1fk(·)

}
gj(η

T
j ; ·)dηTi

]
∑T

t=1 E
[∫ (

ijt+1 −
∑K

k=0 a
I
k1fk(·)

)
1
{
ijt+1 ≤

∑K
k=0 a

I
k1fk(·)

}
gj(ηTj ; ·)dηTi

]

and

τ+ =

∑T
t=1 E

[∫
1
{
ijt+1 ≥

∑K
k=0 a

I
kLfk(·)

}
gj(η

T
j ; ·)dηTi

]
∑T

t=1 E
[∫ (

ijt+1 −
∑K

k=0 a
I
kLfk(·)

)
1
{
ijt+1 ≥

∑K
k=0 a

I
kLfk(·)

}
gj(ηTj ; ·)dηTi

]

where fk(·) = fk(kjt, ηjt, εjt).
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F.3 Likelihood function

The likelihood function, omitting the conditioning on firm age for conciseness, is:

f(ijt+1, kjt, ηjt, εjt; θ, µ) =
T∏
t=1

f(ijt+1|kjt, ηjt, εjt;µ)
t∏
t=1

f(zjt|ηjt; θ)
T∏
t=2

f(ηjt|ηjt−1; θ)f(ηj1; θ).

The likelihood function can be written in closed form, using similar techniques as in

Arellano et al. (2017).

F.4 Estimation algorithm

Start at µ̂(0). Iterate on s = 1, 2, . . . the following two steps:

1. Stochastic E step: Draw η(m) = (η
(m)
j1 , . . . , η

(m)
jT ) from the posterior density of the

distribution of η given the data. The complete form of the likelihood for the poste-

rior density is the following:

f(ηTj |ijt+1, kjt, εjt; θ̂, µ
(s)) ∝

T∏
t=1

f(ijt+1|kjt, ηjt, εjt)f(zjt|ηjt)× (50)

T∏
t=2

f(ηjt|ηjt−1)f(ηj1)

2. M step: Compute, for l = 1, . . . , L:

min
aI0(τl),...,a

I
K(τl)

N∑
i=1

T∑
t=1

M∑
m=1

ρτl

(
ijt+1 −

K∑
k=0

aIk(τl)fk(kjt, η
(m)
jt , ε

(m)
jt , ageit+1)−X

′

jtβ(τl)

)
(51)

and for the tail parameters:

τ− =

∑T
t=1

∑N
j=1

∑M
m=1 1

{
ijt+1 ≤

∑K
k=0 a

I
k1fk(kjt, η

(m)
jt , ε

(m)
jt )

}
∑T

t=1

∑N
j=1

∑M
m=1(ijt+1 −

∑K
k=0 a

I
k1fk(kjt, η

(m)
jt , ε

(m)
jt ))1

{
ijt+1 ≤

∑K
k=0 a

I
k1fk(kjt, η

(m)
jt , ε

(m)
jt )

}
and

τ+ =

∑T
t=1

∑N
j=1

∑M
m=1 1

{
ijt+1 ≥

∑K
k=0 a

I
kLfk(kjt, η

(m)
jt , ε

(m)
jt )

}
∑T

t=1

∑N
j=1

∑M
m=1(ijt+1 −

∑K
k=0 a

I
kLfk(kjt, η

(m)
jt , ε

(m)
jt ))1

{
ijt+1 ≥

∑K
k=0 a

I
kLfk(kjt, η

(m)
jt , ε

(m)
jt )

}
62



In practice, we start the algorithm with different choices for µ̂(0). For example, we

estimate the investment rate on capital, productivity and age via quantile regressions. We

proceed similarly to set other starting parameter values. We experimented with several

other choices and selected the parameter values corresponding to the highest average

log-likelihood over iterations. We observed some effect of starting values on estimates of

tail parameters, although most results were stable.

G Additional results on empirical investment policy

functions
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Figure 18: Graphs of the MPI with respect to productivity, nonparametric bootstraps.

Note: These graphs provide the nonparametric bootstrap for the marginal propensities to invest with
respect to productivity zjt. Top: Data. Middle: Simulated data from the model under the nonlinear
productivity process. Bottom: Simulated data from the model under the canonical productivity process.
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Figure 19: Graphs of the MPI with respect to persistent and transitory productivities,
nonparametric bootstraps.

Note: These graphs provide the non-parametric bootstrap for the marginal propensities to invest with
respect to persistent productivity ηjt and transitory productivity εjt. Top left: ηjt, nonlinear process.
Top right: εjt, nonlinear process. Bottom left: ηjt, canonical process. Bottom right: εjt, canonical
process.
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Figure 20: Marginal propensities to invest with respect to capital

(a) Response to capital, data (b) Response to capital, simulated model

(c) Response to capital, non-linear model (d) Response to capital, canonical model

Note: The above figures show the average derivative effect of capital on firm investment, evaluated at
different percentiles of capital and productivity, and averaged across age. Top left: investment responses
from the data. Top right: investment responses to capital based on simulated data from the nonlin-
ear model. Bottom left: investment responses to capital, non-linear model. Bottom left: investment
responses to capital, canonical model.
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Figure 21: Predicted vs. observed distribution of investment rates

Note: The above figure shows the predicted distribution of investment rates implied by the nonlinear
model of firm investment and the observed distribution of investment rates from the data.

H Additional results on the model
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Policies depending on productivity for firms with low capital

Policies depending on productivity for firms with high capital

Figure 22: Policy functions in the model with no costs (blue) and with capital adjust-
ment costs (orange) when firms’ productivity follows an AR(1) process (left panels) and
when firms’ productivity follows the non-linear process (right panel).
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